Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.924
1.
Sci Rep ; 14(1): 10569, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719918

Within the medical field of human assisted reproductive technology, a method for interpretable, non-invasive, and objective oocyte evaluation is lacking. To address this clinical gap, a workflow utilizing machine learning techniques has been developed involving automatic multi-class segmentation of two-dimensional images, morphometric analysis, and prediction of developmental outcomes of mature denuded oocytes based on feature extraction and clinical variables. Two separate models have been developed for this purpose-a model to perform multiclass segmentation, and a classifier model to classify oocytes as likely or unlikely to develop into a blastocyst (Day 5-7 embryo). The segmentation model is highly accurate at segmenting the oocyte, ensuring high-quality segmented images (masks) are utilized as inputs for the classifier model (mask model). The mask model displayed an area under the curve (AUC) of 0.63, a sensitivity of 0.51, and a specificity of 0.66 on the test set. The AUC underwent a reduction to 0.57 when features extracted from the ooplasm were removed, suggesting the ooplasm holds the information most pertinent to oocyte developmental competence. The mask model was further compared to a deep learning model, which also utilized the segmented images as inputs. The performance of both models combined in an ensemble model was evaluated, showing an improvement (AUC 0.67) compared to either model alone. The results of this study indicate that direct assessments of the oocyte are warranted, providing the first objective insights into key features for developmental competence, a step above the current standard of care-solely utilizing oocyte age as a proxy for quality.


Blastocyst , Machine Learning , Oocytes , Humans , Blastocyst/cytology , Blastocyst/physiology , Oocytes/cytology , Female , Embryonic Development , Adult , Fertilization in Vitro/methods , Image Processing, Computer-Assisted/methods
2.
Sci Rep ; 14(1): 10636, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724644

Gene-knockout animal models with organ-deficient phenotypes used for blastocyst complementation are generally not viable. Animals need to be maintained as heterozygous mutants, and homozygous mutant embryos yield only one-fourth of all embryos. In this study, we generated organ-deficient embryos using the CRISPR-Cas9-sgRNAms system that induces cell death with a single-guide RNA (sgRNAms) targeting multiple sites in the genome. The Cas9-sgRNAms system interrupted cell proliferation and induced cell ablation in vitro. The mouse model had Cas9 driven by the Foxn1 promoter with a ubiquitous expression cassette of sgRNAms at the Rosa26 locus (Foxn1Cas9; Rosa26_ms). It showed an athymic phenotype similar to that of nude mice but was not hairless. Eventually, a rat cell-derived thymus in an interspecies chimera was generated by blastocyst complementation of Foxn1Cas9; Rosa26_ms mouse embryos with rat embryonic stem cells. Theoretically, a half of the total embryos has the Cas9-sgRNAms system because Rosa26_ms could be maintained as homozygous.


CRISPR-Cas Systems , Forkhead Transcription Factors , RNA, Guide, CRISPR-Cas Systems , Animals , Mice , Rats , RNA, Guide, CRISPR-Cas Systems/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Thymus Gland/metabolism , Models, Animal , Blastocyst/metabolism
3.
Cells ; 13(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38727294

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Behavior, Animal , Mitochondria , Oocytes , Oxidative Stress , Animals , Oocytes/metabolism , Mitochondria/metabolism , Female , Mice , Male , Ovulation , Anxiety/metabolism , Anxiety/pathology , Antioxidants/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Blastocyst/metabolism , Cellular Senescence , Memory
4.
Front Endocrinol (Lausanne) ; 15: 1366360, 2024.
Article En | MEDLINE | ID: mdl-38745950

Introduction: This study aimed to explore the effect of cryopreservation duration after blastocyst vitrification on the singleton birth-weight of newborns to assess the safety of long-term preservation of frozen-thawed blastocyst transfer (FBT) cycles. Methods: This was a retrospective observational study conducted at the Gynecological Endocrinology and Assisted Reproduction Center of the Peking Union Medical College Hospital. Patients who gave birth to singletons between January 2006 and December 2021 after undergoing FBT cycles were included. Five groups were formed according to the duration of cryopreservation of embryos at FBT: Group I included 274 patients with a storage time < 3 months. Group II included 607 patients with a storage time of 3-6 months. Group III included 322 patients with a storage time of 6-12 months. Group IV included 190 patients with a storage time of 12-24 months. Group V included 118 patients with a storage time of > 24 months. Neonatal outcomes were compared among the groups. Multivariate linear regression analysis was performed to evaluate birth-weights and other birth-related outcomes. Results: A total of 1,511 patients were included in the analysis. The longest cryopreservation period was 12 years. The birth-weights of neonates in the five groups were 3344.1 ± 529.3, 3326.1 ± 565.7, 3260.3 ± 584.1, 3349.9 ± 582.7, and 3296.7 ± 491.9 g, respectively (P > 0.05). The incidences of preterm birth, very preterm birth, low birth-weight, and very low birth-weight were similar in all groups (P > 0.05). The large-for-gestational-age and small-for-gestational-age rates did not differ significantly among the groups (P > 0.05). After adjusting for confounding factors that may affect neonatal outcomes, a trend for an increased risk of low birth-weight with prolonged cryopreservation was observed. However, cryopreservation duration and neonatal birth-weight were not significantly correlated (P > 0.05). Conclusion: The duration of cryopreservation after blastocyst vitrification with an open device for more than 2 years had no significant effect on the birth-weight of FBT singletons; however, attention should be paid to a possible increase in the risk of low birth-weight.


Birth Weight , Cryopreservation , Embryo Transfer , Vitrification , Humans , Cryopreservation/methods , Female , Retrospective Studies , Embryo Transfer/methods , Adult , Pregnancy , Birth Weight/physiology , Infant, Newborn , Blastocyst , Time Factors , Fertilization in Vitro/methods , Male , Pregnancy Outcome/epidemiology
5.
Epigenetics ; 19(1): 2346694, 2024 Dec.
Article En | MEDLINE | ID: mdl-38739481

The transgenerational effects of exposing male mice to chronic social instability (CSI) stress are associated with decreased sperm levels of multiple members of the miR-34/449 family that persist after their mating through preimplantation embryo (PIE) development. Here we demonstrate the importance of these miRNA changes by showing that restoring miR-34c levels in PIEs derived from CSI stressed males prevents elevated anxiety and defective sociability normally found specifically in their adult female offspring. It also restores, at least partially, levels of sperm miR-34/449 normally reduced in their male offspring who transmit these sex-specific traits to their offspring. Strikingly, these experiments also revealed that inducing miR-34c levels in PIEs enhances the expression of its own gene and that of miR-449 in these cells. The same induction of embryo miR-34/449 gene expression likely occurs after sperm-derived miR-34c is introduced into oocytes upon fertilization. Thus, suppression of this miRNA amplification system when sperm miR-34c levels are reduced in CSI stressed mice can explain how a comparable fold-suppression of miR-34/449 levels can be found in PIEs derived from them, despite sperm containing ~50-fold lower levels of these miRNAs than those already present in PIEs. We previously found that men exposed to early life trauma also display reduced sperm levels of miR-34/449. And here we show that miR-34c can also increase the expression of its own gene, and that of miR-449 in human embryonic stem cells, suggesting that human PIEs derived from men with low sperm miR-34/449 levels may also contain this potentially harmful defect.


Blastocyst , Epigenesis, Genetic , MicroRNAs , Spermatozoa , Stress, Psychological , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Animals , Spermatozoa/metabolism , Female , Mice , Blastocyst/metabolism , Stress, Psychological/metabolism , Stress, Psychological/genetics , Humans , Mice, Inbred C57BL
6.
Reprod Domest Anim ; 59(5): e14576, 2024 May.
Article En | MEDLINE | ID: mdl-38712681

The possibility of embryo cryopreservation is important for applying the genome resource banking (GRB) concept to those mammalian species that exhibit embryonal diapause in their early development. Odc1 encodes ODC1, which is a key enzyme in polyamine synthesis. RhoA is an essential part of Rho/ROCK system. Both Odc1 and RhoA play an important role in preimplantation embryo development. Studying these systems in mammalian species with obligate or experimentally designed embryonic diapause may provide insight into the molecular machinery underlying embryo dormancy and re-activation. The effect of cryopreservation procedures on the expression of the Odc1 and RhoA in diapausing embryos has not been properly studied yet. The purpose of this work is to address the possibility of cryopreservation diapausing embryos and to estimate the expression of the Odc1 and RhoA genes in diapausing and non-diapausing embryos before and after freeze-thaw procedures using ovariectomized progesterone treated mice as a model. Both diapausing and non-diapausing in vivo-derived embryos continued their development in vitro after freezing-thawing as evidenced by blastocoel re-expansion. Although cryopreservation dramatically decreased the expression of the Odc1 and RhoA genes in non-diapausing embryos, no such effects have been observed in diapausing embryos where these genes were already at the low level before freeze-thaw procedures. Future studies may attempt to facilitate the re-activation of diapausing embryos, for example frozen-thawed ones, specifically targeting Odc1 or Rho/ROCK system.


Blastocyst , Cryopreservation , rhoA GTP-Binding Protein , Animals , Cryopreservation/veterinary , Blastocyst/metabolism , Female , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Mice , Gene Expression Regulation, Developmental , Diapause , Embryonic Development , Embryo Culture Techniques/veterinary
7.
Sci Rep ; 14(1): 10295, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704415

Lysine crotonylation (Kcr) is a recently discovered histone acylation modification that is closely associated with gene expression, cell proliferation, and the maintenance of stem cell pluripotency and indicates the transcriptional activity of genes and the regulation of various biological processes. During cell culture, the introduction of exogenous croconic acid disodium salt (Nacr) has been shown to modulate intracellular Kcr levels. Although research on Kcr has increased, its role in cell growth and proliferation and its potential regulatory mechanisms remain unclear compared to those of histone methylation and acetylation. Our investigation demonstrated that the addition of 5 mM Nacr to cultured bovine fibroblasts increased the expression of genes associated with Kcr modification, ultimately promoting cell growth and stimulating cell proliferation. Somatic cell nuclear transfer of donor cells cultured in 5 mM Nacr resulted in 38.1% blastocyst development, which was significantly greater than that in the control group (25.2%). This research is important for elucidating the crotonylation modification mechanism in fibroblast proliferation to promote the efficacy of somatic cell nuclear transfer.


Cell Proliferation , Fibroblasts , Histones , Nuclear Transfer Techniques , Animals , Cattle , Fibroblasts/metabolism , Fibroblasts/cytology , Cell Proliferation/drug effects , Histones/metabolism , Embryonic Development , Blastocyst/metabolism , Blastocyst/cytology , Lysine/metabolism , Crotonates/metabolism , Cells, Cultured , Protein Processing, Post-Translational , Female
8.
Sci Rep ; 14(1): 10316, 2024 05 05.
Article En | MEDLINE | ID: mdl-38705876

Current approaches to diagnosing male infertility inadequately assess the complexity of the male gamete. Beyond the paternal haploid genome, spermatozoa also deliver coding and non-coding RNAs to the oocyte. While sperm-borne RNAs have demonstrated potential involvement in embryo development, the underlying mechanisms remain unclear. In this study, 47 sperm samples from normozoospermic males undergoing fertility treatment using donor oocytes were sequenced and analyzed to evaluate associations between sperm RNA elements (exon-sized sequences) and blastocyst progression. A total of 366 RNA elements (REs) were significantly associated with blastocyst rate (padj < 0.05), some of which were linked to genes related to critical developmental processes, including mitotic spindle formation and both ectoderm and mesoderm specification. Of note, 27 RE-associated RNAs are predicted targets of our previously reported list of developmentally significant miRNAs. Inverse RE-miRNA expression patterns were consistent with miRNA-mediated down-regulation. This study provides a comprehensive set of REs which differ by the patient's ability to produce blastocysts. This knowledge can be leveraged to improve clinical screening of male infertility and ultimately reduce time to pregnancy.


Infertility, Male , MicroRNAs , Spermatozoa , Humans , Male , Infertility, Male/genetics , Spermatozoa/metabolism , MicroRNAs/genetics , Adult , Female , Blastocyst/metabolism , RNA/genetics , RNA/metabolism , Embryonic Development/genetics
9.
Mol Biol Rep ; 51(1): 621, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709430

BACKGROUND: To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS: MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION: Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.


Embryonic Development , Extracellular Vesicles , Oocytes , Animals , Extracellular Vesicles/metabolism , Mice , Female , Oocytes/metabolism , Oocytes/cytology , Fertilization in Vitro/methods , Blastocyst/metabolism , In Vitro Oocyte Maturation Techniques/methods , HSP90 Heat-Shock Proteins/metabolism
10.
PLoS One ; 19(5): e0299602, 2024.
Article En | MEDLINE | ID: mdl-38696439

PURPOSE: The purposes of this study were to determine whether biomechanical properties of mature oocytes could predict usable blastocyst formation better than morphological information or maternal factors, and to demonstrate the safety of the aspiration measurement procedure used to determine the biomechanical properties of oocytes. METHODS: A prospective split cohort study was conducted with patients from two IVF clinics who underwent in vitro fertilization. Each patient's oocytes were randomly divided into a measurement group and a control group. The aspiration depth into a micropipette was measured, and the biomechanical properties were derived. Oocyte fertilization, day 3 morphology, and blastocyst development were observed and compared between measured and unmeasured cohorts. A predictive classifier was trained to predict usable blastocyst formation and compared to the predictions of four experienced embryologists. RESULTS: 68 patients and their corresponding 1252 oocytes were included in the study. In the safety analyses, there was no significant difference between the cohorts for fertilization, while the day 3 and 5 embryo development were not negatively affected. Four embryologists predicted usable blastocyst development based on oocyte morphology with an average accuracy of 44% while the predictive classifier achieved an accuracy of 71%. Retaining the variables necessary for normal fertilization, only data from successfully fertilized oocytes were used, resulting in a classifier an accuracy of 81%. CONCLUSIONS: To date, there is no standard guideline or technique to aid in the selection of oocytes that have a higher likelihood of developing into usable blastocysts, which are chosen for transfer or vitrification. This study provides a comprehensive workflow of extracting biomechanical properties and building a predictive classifier using these properties to predict mature oocytes' developmental potential. The classifier has greater accuracy in predicting the formation of usable blastocysts than the predictions provided by morphological information or maternal factors. The measurement procedure did not negatively affect embryo culture outcomes. While further analysis is necessary, this study shows the potential of using biomechanical properties of oocytes to predict embryo developmental outcomes.


Blastocyst , Embryonic Development , Fertilization in Vitro , Oocytes , Humans , Blastocyst/physiology , Blastocyst/cytology , Female , Oocytes/physiology , Oocytes/cytology , Adult , Biomechanical Phenomena , Fertilization in Vitro/methods , Embryonic Development/physiology , Prospective Studies
11.
BMC Pregnancy Childbirth ; 24(1): 339, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702596

OBJECTIVE: This study aimed to compare the per OPU clinical outcomes for transfer of Day 3 double cleavage-stage embryos (DET) and Day 5 single blastocyst-stage (SBT) in patients with five or fewer good quality embryos on day 3 per occyte pick-up cycle (OPU) in antagonist cycles with consideration of blastocyst formation failure. METHODS: This was a retrospective, observational cohort study of 2,116 cases of OPU treated with antagonist protocol in the affiliated Chenggong Hospital of Xiamen University between January 2013 and December 2020. DET was performed in 1,811cycles and SBT was performed in 305 cycles. The DET group was matched to the SBT group by propensity score (PS) matching according to multiple maternal baseline covariates. After PS matching, there were 303 ET cycles in each group. The primary outcomes were the cumulative live birth rate (CLBR), cumulative multiple pregnancy rate(CMPR)per OPU and the number of ET to achieve live birth per OPU. Secondary outcomes were the percentage of clinical pregnancy(CPR), live birth rate(LBR), multiple pregnancy rate(MPR). RESULTS: Following PS mating, the CLBR was slightly higher (48.8% versus 40.3% ; P = 0.041) and the CMPR was significantly higher in the DET group compared to SBT group(44.2% versus 7.9%, P < 0.001). The CPR, LBR and MPR per fresh transfer were higher in DET group compared to SBT group(50.2% versus 28.7%; 41.3% versus 21.5%;29.6% versus 0%, P < 0.001). The number of ET to achieve live birth per OPU in SBT group was obiviously more than in DET group(1.48 ± 0.578 versus 1.22 ± 0.557 ,P < 0.001). CONCLUSION: With a marginal difference cumulative live birth rate, the lower live birth rate per fresh transfer and higher number of ET per OPU in the SBT group suggested that it might take longer time to achieve a live birth with single blastocyst strategy. A trade-off decision should be made between efficiency and safety.


Cleavage Stage, Ovum , Embryo Transfer , Pregnancy Rate , Propensity Score , Humans , Retrospective Studies , Female , Pregnancy , Adult , Embryo Transfer/methods , Single Embryo Transfer/methods , Live Birth , Blastocyst , Ovulation Induction/methods
12.
Front Endocrinol (Lausanne) ; 15: 1378635, 2024.
Article En | MEDLINE | ID: mdl-38737550

Objective: The objective of this study is to investigate the factors that influence the live birth rate (LBR) of the first single euploid frozen-thawed blastocyst transfer (FBT) cycles after preimplantation genetic testing for structural rearrangements (PGT-SR) in couples with balanced chromosomal translocations (BCT). Design: Single center, retrospective and observational study. Methods: A total of 336 PGT-SR and the first single euploid FBT cycles between July 2016 and December 2022 were included in this study. The patients were divided into two groups according to the live birth outcomes. The parameters of the study population, controlled ovarian stimulation cycles, and FBT cycles were analyzed. Multivariable binary logistic regression was performed to find the factors that affected the LBR. Results: The percentage of blastocysts at developmental stage Day 5 compared to Day 6 (51.8% vs. 30.8%; P<0.001) and with morphology ≥BB compared to

Cryopreservation , Embryo Transfer , Live Birth , Pregnancy Rate , Preimplantation Diagnosis , Translocation, Genetic , Humans , Female , Pregnancy , Retrospective Studies , Adult , Embryo Transfer/methods , Male , Preimplantation Diagnosis/methods , Birth Rate , Fertilization in Vitro/methods , Pregnancy Outcome , Blastocyst , Ovulation Induction/methods
13.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38612816

The implantation of human embryos is a complex process involving various cytokines and receptors expressed by both endometrium and embryos. However, the role of cytokines produced by a single embryo in successful implantation is largely unknown. This study aimed to investigate the role of IL-1ß expressed in a single-embryo-conditioned medium (ECM) in embryo implantation. Seventy samples of single ECM were analyzed by a specially designed magnetic-beads-based microfluidic chip from 15 women. We discovered that IL-1ß level increased as the embryo developed, and the difference was significant. In addition, receiver operator characteristic (ROC) curves analysis showed a higher chance of pregnancy when the IL-1ß level on day 5 ECM was below 79.37 pg/mL and the difference between day 5 and day 3 was below 24.90 pg/mL. Our study discovered a possible association between embryonic proteomic expression and successful implantation, which might facilitate single-embryo transfer in the future by helping clinicians identify the embryo with the greatest implantation potential.


Microfluidics , Proteomics , Pregnancy , Humans , Female , Culture Media, Conditioned , Interleukin-1beta , Blastocyst , Embryo Implantation , Cytokines
14.
Zygote ; 32(2): 170-174, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619002

Oocytes with excessively large first polar bodies (PB1) often occur in assisted reproductive procedures. Many times these oocytes are discarded without insemination and, as a result, the application of this portion of oocytes has scarcely been reported to date. Few studies have examined large PB1 oocytes in infertile women and have virtually entirely studied genetic variations for large PB1 oocyte abnormalities. Here, we describe an unusual case of a live birth from a remarkably large PB1 oocyte in a frozen embryo transfer (FET) cycle. This is the first instance of a successful live birth resulting from a PB1 oocyte with an extremely large polar body measuring 80 µM × 40 µM in size. The large PB1 oocyte was performed by an early rescue intracytoplasmic sperm injection (r-ICSI) and was formed into a blastocyst on day 5. Following FET, a healthy boy baby weighing 3100 g was finally delivered by caesarean section at 37 weeks and 5 days after conception. Additionally, there were no complications throughout the antenatal period or the perinatal phase of this following full-term delivery. In this study, it is revealed for the first time that a huge PB1 oocyte can be fertilized, resulting in the growth of a blastocyst, a subsequent pregnancy, and a live birth. This new information prompts us to reconsider the use of large PB1 oocytes. More insightful talks should be given attention to prevent the waste of embryos because not all oocytes with aberrant morphology are unavailable.


Embryo Transfer , Live Birth , Oocytes , Polar Bodies , Sperm Injections, Intracytoplasmic , Humans , Female , Pregnancy , Sperm Injections, Intracytoplasmic/methods , Adult , Oocytes/physiology , Oocytes/cytology , Male , Embryo Transfer/methods , Infant, Newborn , Blastocyst/cytology , Blastocyst/physiology , Cryopreservation
15.
BMC Pregnancy Childbirth ; 24(1): 258, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605294

BACKGROUND: Embryo quality is usually regarded as a key predictor of successful implantation and clinical pregnancy potential. The identification of embryos that have the capacity to implant and result in a healthy pregnancy is a crucial part of in vitro fertilization (IVF). Usually, morphologically high-quality embryos are chosen for embryo transfer in IVF treatment. The aim of this study was to assess the association between the available blastocyst formation rate and the clinical pregnancy outcome following the first fresh embryo transfer cycle and provide systematic individual treatment to adjust endometrial receptivity for the next transfer cycle. METHODS: This retrospective, single-center study included 512 fresh embryo transfers conducted between 11/2019 and 08/2021, which consisted of 385 cleavage-stage (Day 3) and 127 blastocyst-stage (Day 5) embryo transfers. The two groups were divided into a clinical pregnancy group and a nonclinical pregnancy group for comparison. The association between the available blastocyst formation rate and the clinical pregnancy rate in the Day 3 and Day 5 transfer groups were considered. RESULTS: In the Day 3 group, there were 275 clinical pregnancies, and the clinical pregnancy rate was 71.43%. Although the two pronuclei (2PN) oocyte rate and available embryo rate at Day 3 were significantly higher in the clinical pregnancy group than the nonclinical pregnancy group (P < 0.05), the blastocyst formation rate and the available blastocyst formation rate were not significantly different between the clinical pregnancy group and the nonclinical pregnancy group (P > 0.05). In the Day 5 group, there were 81 clinical pregnancies, and the clinical pregnancy rate was 63.78%. No baseline characteristics showed any obvious differences between the clinical pregnancy group and nonclinical pregnancy group (P > 0.05). The blastocyst formation rate in the nonclinical pregnancy group was higher than that in the clinical pregnancy group, but the difference was not statistically significant (81.06% vs. 77.03%, P = 0.083). Interestingly, the available blastocyst formation rate and the Day 5 available blastocyst formation rate were significantly higher in the nonclinical pregnancy group than the clinical pregnancy group (66.19% vs. 60.79%, P = 0.014; 54.58% vs. 46.98%, P = 0.007). CONCLUSIONS: In fresh cycles, the available blastocyst formation rate was not associated with the clinical pregnancy outcome for Day 3 embryo transfers, and the available blastocyst formation rate was not positively correlated with the clinical pregnancy outcome for Day 5 embryo transfers.


Embryo Transfer , Fertilization in Vitro , Female , Pregnancy , Humans , Retrospective Studies , Pregnancy Rate , Pregnancy Outcome , Blastocyst , Endometrium
16.
Cells ; 13(7)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38607067

In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently, transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200's ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of the donor's cell age. Overall, the approach here described represents a novel strategy for the creation of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri- and early post-implantation mechanisms.


Cues , MicroRNAs , Blastocyst , Cellular Reprogramming , Embryo Implantation , MicroRNAs/genetics
17.
FASEB J ; 38(8): e23623, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38656660

The nuclear transport of proteins plays an important role in mediating the transition from egg to embryo and distinct karyopherins have been implicated in this process. Here, we studied the impact of KPNA2 deficiency on preimplantation embryo development in mice. Loss of KPNA2 results in complete arrest at the 2cell stage and embryos exhibit the inability to activate their embryonic genome as well as a severely disturbed nuclear translocation of Nucleoplasmin 2. Our findings define KPNA2 as a new maternal effect gene.


Embryonic Development , alpha Karyopherins , Animals , Female , Mice , alpha Karyopherins/metabolism , alpha Karyopherins/genetics , Embryonic Development/genetics , Fertility/genetics , Mice, Knockout , Maternal Inheritance , Gene Expression Regulation, Developmental , Male , Pregnancy , Nucleoplasmins/metabolism , Nucleoplasmins/genetics , Blastocyst/metabolism
18.
Cell ; 187(9): 2129-2142.e17, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38670071

Interspecies blastocyst complementation (IBC) provides a unique platform to study development and holds the potential to overcome worldwide organ shortages. Despite recent successes, brain tissue has not been achieved through IBC. Here, we developed an optimized IBC strategy based on C-CRISPR, which facilitated rapid screening of candidate genes and identified that Hesx1 deficiency supported the generation of rat forebrain tissue in mice via IBC. Xenogeneic rat forebrain tissues in adult mice were structurally and functionally intact. Cross-species comparative analyses revealed that rat forebrain tissues developed at the same pace as the mouse host but maintained rat-like transcriptome profiles. The chimeric rate of rat cells gradually decreased as development progressed, suggesting xenogeneic barriers during mid-to-late pre-natal development. Interspecies forebrain complementation opens the door for studying evolutionarily conserved and divergent mechanisms underlying brain development and cognitive function. The C-CRISPR-based IBC strategy holds great potential to broaden the study and application of interspecies organogenesis.


Prosencephalon , Animals , Prosencephalon/metabolism , Prosencephalon/embryology , Mice , Rats , Blastocyst/metabolism , Female , CRISPR-Cas Systems/genetics , Transcriptome , Organogenesis , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Male , Mice, Inbred C57BL
19.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38670072

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Neurons , Animals , Mice , Rats , Neurons/metabolism , Neurons/cytology , Neurons/physiology , Blastocyst/metabolism , Blastocyst/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Brain/cytology , Brain/physiology , Female , Hippocampus/cytology , Hippocampus/physiology , Species Specificity , Mice, Inbred C57BL , Male
20.
Development ; 151(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38563517

The lineage decision that generates the epiblast and primitive endoderm from the inner cell mass (ICM) is a paradigm for cell fate specification. Recent mathematics has formalized Waddington's landscape metaphor and proven that lineage decisions in detailed gene network models must conform to a small list of low-dimensional stereotypic changes called bifurcations. The most plausible bifurcation for the ICM is the so-called heteroclinic flip that we define and elaborate here. Our re-analysis of recent data suggests that there is sufficient cell movement in the ICM so the FGF signal, which drives the lineage decision, can be treated as spatially uniform. We thus extend the bifurcation model for a single cell to the entire ICM by means of a self-consistently defined time-dependent FGF signal. This model is consistent with available data and we propose additional dynamic experiments to test it further. This demonstrates that simplified, quantitative and intuitively transparent descriptions are possible when attention is shifted from specific genes to lineages. The flip bifurcation is a very plausible model for any situation where the embryo needs control over the relative proportions of two fates by a morphogen feedback.


Blastocyst , Cell Differentiation , Cell Lineage , Models, Biological , Animals , Mice , Blastocyst/metabolism , Blastocyst/cytology , Signal Transduction , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Endoderm/cytology , Endoderm/metabolism , Germ Layers/cytology , Germ Layers/metabolism
...